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We develop a theoretical model for inclined free-surface flow over a porous surface exhibiting periodic
undulations. The effect of bottom permeability is incorporated by imposing a slip condition that accounts
for the nonplanar geometry of the fluid–porous medium interface. Under the assumption of shallow flow,
equations of motion accounting for inertial effects are obtained by retaining in the Navier-Stokes equations
terms that are up to second-order with respect to a small shallowness parameter. The explicit dependence
on the cross-stream coordinate is eliminated from these equations by means of a weighted residual proce-
dure. A linear stability analysis of the steady flow is performed in connection with Floquet–Bloch theory. The
results predict that bottom permeability has a destabilizing influence on the flow. A physical explanation
has been proposed which involves examining how permeability affects the steady-state flow. Conclusions
are drawn regarding the combined effect of the surface tension of the fluid and the parameters describing
the bottom surface including permeability, inclination and the amplitude and wavelength of the undula-
tions that generate the bottom topography. A numerical scheme for solving the fully nonlinear governing
equations is also outlined. The instability of particular steady flows is determined by conducting nonlinear
simulations of the temporal evolution of the flow and comparisons are made with the predictions from the
linear analysis. Comparisons with existing experimental data are also included.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Interfacial instabilities exhibited by inclined film flows have
important consequences in many industrial processes. In certain
cases the emergence of interfacial instability is an undesirable
occurrence. In coating applications, for example, interfacial insta-
bility can cause an uneven distribution of material. In other indus-
trial sectors film flows exhibiting large amplitude wave structures
on the surface can optimize the process. Mass and heat exchangers,
for example, operate more efficiently if the area of the liquid–gas
interface which facilitates the transport is increased.

The critical conditions for the onset of instability in inclined
flows and the development of the unstable flow are influenced
by the structure of the solid surface at the bottom of the fluid layer.
A theoretical investigation that incorporates such bottom effects as
topography and permeability offers a more accurate flow model
and can provide information on constructing surfaces that will in-
duce the desired flow behaviour. In film flow applications these
bottom effects are introduced by substrates with uneven surfaces
composed of a porous material.
ll rights reserved.
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A thorough review of research on the various types of film flow
has recently been compiled by Craster and Matar (2009). Con-
tained in this paper is a survey of previous investigations of grav-
ity-driven film flow including those which, like the present work,
deal with flows involving significant inertial contributions, as well
as those which neglect the effect of inertia and focus on the insta-
bility of contact lines which leads to the formation of the ‘‘finger-
ing” phenomenon. Below we give specific mention to previous
studies on gravity-driven flow which consider bottom topography
and those which investigate the effect of bottom permeability.

Lately, several investigations have reported on gravity-driven
flow over uneven, yet impermeable surfaces. The bottom topography
is described by periodic undulations parameterized by measures of
amplitude and wavelength. Wang (1981) studied steady creeping
flow by employing an asymptotic analysis for small amplitudes of
the bottom undulations. Pozrikidis (1988) also considered steady
flows with negligible inertia and obtained numerical simulations
for flow over corrugations with finite amplitude. Bontozoglou and
Papapolymerou (1997) take into account inertial effects and carry
out a linear analysis of steady flow under the assumption of small
amplitude of the bottom undulations. Nonlinear effects and finite-
amplitude bottom corrugations were considered by Trifonov
(1998) for vertical flows, while Heining et al. (2009) dealt with arbi-
trary inclination. Trifonov (2007a) considered time-dependent flow
down an uneven vertical surface and used a spectral method to carry

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2010.03.003
mailto:jpascal@ryerson.ca
mailto:sdalessio@uwaterloo.ca
http://www.sciencedirect.com/science/journal/03019322
http://www.elsevier.com/locate/ijmulflow


θ

g

x, u

z, w

h(x, t)

ζ(x)

Fig. 1. The flow configuration.
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out a linear stability analysis of the Navier-Stokes equations. In an-
other investigation Trifonov (2007b) used the integrated-bound-
ary-layer (IBL) approach proposed by Shkadov (1967) to study
nonlinear effects in flows down vertical uneven surfaces. A Benney-
type equation (Benney, 1966) for such flows was set up by Davalos-
Orozco (2007). Recently, Oron and Heining (2008), also concentrat-
ing on the vertical flow case, implemented a mathematical model
for flow over uneven topography based on the first-order weighted
residual method proposed by Ruyer-Quil and Manneville (2000).

Flow over undulating surfaces with arbitrary inclination was con-
sidered by Tougou (1978) who proposed a Kuromoto–Sivashinsky
type equation to describe the flow. However, the analysis did not
capture the effect of bottom topography on the onset of instability.
Wierschem et al. (2005) also investigated the flow along a wavy sur-
face of arbitrary inclination. They performed a linear stability analy-
sis using the shallow-flow approximations of the Navier-Stokes
equations under assumptions of long bottom undulations, weak sur-
face tension and Reynolds numbers of order unity. The results are
confirmed by experimental findings and indicate that bottom topog-
raphy has a stabilizing effect on the steady flow. The same general
conclusion was reported by Vlachogiannis and Bontozoglou (2002)
from their experiments of flows over corrugated surfaces. A stability
analysis of shallow flow along an uneven surface of small, yet arbi-
trary inclination has been reported by Balmforth and Mandre
(2004). Their model relies on the internal dissipation term proposed
by Needham and Merkin (1984) for the shallow-water equations
which cannot be coupled with the effects of the bottom configura-
tion. Recently, D’Alessio et al. (2009) have implemented a second-or-
der model for flows over uneven surfaces with moderate to steep
inclination based on the weighted-residual method of Ruyer-Quil
and Manneville (2000). This model incorporates important diffusive
terms that are of second-order with respect to the shallowness of the
flow, and in the even-bottom case is proven to correctly predict the
critical conditions for the onset of flow instability, while accurately
describing unstable flows as demonstrated in Ruyer-Quil and Man-
neville (2002).

The stability of flow along an incline with an even surface com-
posed of a porous material was examined by Pascal (1999). Under
an assumption of small permeability, the Orr-Sommerfeld equa-
tion was used in connection with a linear stability analysis to ob-
tain critical conditions for the onset of instability. In Pascal
(2006) a nonlinear analysis was carried out using the IBL equa-
tions. Recently, Thiele et al. (2009) considered flow over a porous
surface without the restriction of small permeability, however
their analytical investigation is limited to a linear stability analysis
of a first-order Benney-type equation.

To the best of our knowledge the stability of flow over a perme-
able inclined surface exhibiting periodic undulations has not yet
been studied. In the present work we undertake such an investiga-
tion by extending the model developed in D’Alessio et al. (2009) to
account for bottom permeability with the aim of exploring the
combined effect of bottom unevenness and permeability on the
instability of the flow. The paper is organized as follows. In Section
2 we describe how the effect of bottom permeability is incorpo-
rated into the equations of motion for the fluid layer and we estab-
lish the depth-integrated flow model. In Section 3 a linear stability
analysis is performed, while in Section 4 a numerical method is
presented for solving the fully nonlinear governing equations and
obtaining the entire evolution of a perturbed equilibrium flow.
The predictions for the onset of instability made by these calcula-
tions are compared with those from the linear analysis, and the
solution for the surface profile is used to investigate the interfacial
wave pattern associated with flow instability. Lastly, a summary is
included in the concluding section. Two appendices, Appendices A
and B, are also included to present details surrounding the Benney
equation and the numerical solution procedure, respectively.
2. Governing equations

We consider the two-dimensional laminar flow of a shallow
layer of a Newtonian fluid with no external forcing at the surface
along an uneven inclined surface as shown in Fig. 1. We define
an ðx; zÞ coordinate system with the x-axis inclined at an angle h
with respect to the horizontal and pointing in the downhill direc-
tion, and with the z-axis pointing in the upward normal direction.
The inclined solid over which the fluid is flowing is assumed to be
porous and saturated with fluid and assumed to have periodic
undulations on its surface expressed by

z ¼ fðxÞ ¼ Ab cos
2px
kb

� �
;

with the parameters Ab and kb characterizing the amplitude and
wavelength of the undulations, respectively. The fluid velocity is de-
noted by u ¼ ðu;wÞT .

In scaling the equations of motion, for the vertical length scale
we employ the Nusselt thickness of flow along an impermeable
surface resulting from a constant discharge, Q, which is given by

H ¼ 3lQ
qg sin h

� �1=3

;

where g is the acceleration due to gravity and q;l are the fluid den-
sity and viscosity, respectively. Another evident possibility for the
vertical length scale is the Nusselt thickness corresponding to flow
along a permeable surface. However, the previously mentioned
scale is preferable since it allows for the permeability of the bottom
surface to be introduced into our model as an independent
parameter.

The pressure is scaled using qU2 where U ¼ Q=H is the velocity
scale. The corresponding time scale is taken to be l=U where l is the
horizontal length scale. An obvious choice for the horizontal length
scale is l ¼ kb. As the shallowness parameter we select
d ¼ H=l ¼ H=kb. The scaled bottom profile is then given by

fðxÞ ¼ ab cosð2pxÞ where ab ¼
Ab

H
¼ 1

d
Ab

kb
:

In this study we will consider small bottom waviness having
Ab=kb ¼ OðdÞ and thus ab ¼ Oð1Þ.

The equations of motion in the fluid layer and the conditions at
the surface are identical to those corresponding to the impermeable
bottom case. As detailed in D’Alessio et al. (2009) these equations are
obtained from the two-dimensional Navier-Stokes equations by
assuming the Reynolds number, Re ¼ qQ=l, to be Oð1Þ and neglect-
ing terms which are Oðd3Þ. The continuity equation is given by
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@u
@x
þ @w
@z
¼ 0; ð1Þ

while using the z-momentum equation to eliminate the pressure
from the x-momentum yields:

dRe
Du
Dt
¼� 3 cot hd

@z1

@x
þ d2 @

@x
@u
@x

����
z¼z1

 !
þ d2 @

2u
@x2

þ Red3S
@3z1

@x3 þ 3þ d2 @
2u
@x2 þ

@2u
@z2 : ð2Þ

In this equation D
Dt denotes the two-dimensional material derivative,

z1 ¼ fðxÞ þ hðx; tÞ is the free surface and S ¼ TH=ðqQ2Þ, with T refer-
ring to the surface tension of the fluid. The surface tension param-
eter S can be interpreted as an inverse Weber number and is
assumed to be of order 1=d2 or larger.

At the surface of the fluid layer we have the tangential force
condition

@u
@z
� 4d2 @z1

@x
@u
@x
þ d2 @w

@x
¼ 0 at z ¼ z1; ð3Þ

together with the kinematic condition expressed as

w ¼ @h
@t
þ u

@h
@x
þ uf0ðxÞ at z ¼ z1: ð4Þ

In order to incorporate the effect of the permeability of the bottom
and the filtration flow through it we impose a slip-velocity condition
at the fluid–porous medium interface. Such a condition was originally
proposed by Beavers and Joseph (1967) in connection with their
investigation of Stokes flow over a porous medium the flow through
which is assumed to be governed by Darcy’s law. The Beavers and Jo-
seph condition has been employed by several researchers in connec-
tion with stability analysis of flows over porous surfaces being
governed by the Navier-Stokes equations. The Poiseuille flow over
porous surfaces has been recently investigated by Chang et al.
(2006) and Liu et al. (2008), while the gravity-driven flow with a free
surface was considered by Davis and Hocking (1999), Pascal (1999),
Miglio et al. (2003), Pascal (2006), and Sadiq and Usha (2008).

Saffman (1971) gave a theoretical justification of the Beavers
and Joseph condition and presented a formulation suitable for
the general nonplanar geometry expressed as

@vk
@N
¼ affiffiffiffi

j
p vk � vkp

� �
;

where vk is the component of the dimensional velocity of the fluid
that is tangent to the interface, N is the normal unit vector to the
interface pointing into the fluid and vkp is the tangential component
of the mean filtration velocity in the porous medium. The perme-
ability of the porous medium is denoted by j and a is a dimension-
less empirical parameter which is found to depend on the structure
of the porous medium. Scaling this condition while using jqg sin h

l as
the scale for the filtration velocity we obtain:

d1

1þ d2ðf0Þ2
h i3=2

@u
@z
þ d2f0

@w
@z
� d2f0

@u
@x
� d4f0f00w� d4ðf0Þ2 @w

@x

� 	


½1þ d2ðf0Þ2
i
þ d4ðf0Þ2f00ðuþ d2f0wÞ

o
¼ uþ d2f0w� d3ðup þ d2f0wpÞ at z ¼ fðxÞ;

where up and wp are the dimensionless filtration velocity components
in the porous medium and d1 is a permeability parameter given by

d1 ¼
ffiffiffiffi
j
p

aH
:

Continuity of the normal velocity component at the fluid–por-
ous medium interface is expressed as:

w� f0u ¼ d3ðwp � f0upÞ at z ¼ fðxÞ:
In the present study we assume that d1 ¼ OðdÞ. Considering that
in the experiments of Beavers and Joseph the parameter a varies
between 0.1 and 0.4, our assumption is consistent with Darcy
numbers, Da ¼ j

H2, ranging from 10�4 to 10�2. This range includes
circumstances considered in experimental investigations and
occurring in flows over natural surfaces and substrates involved
in industrial processes. Neglecting terms of order d3 and higher
in the two conditions at the interface listed above we obtain:

d1
@u
@z
¼ uþ d2f0w at z ¼ fðxÞ; ð5Þ

and

w ¼ f0u at z ¼ fðxÞ: ð6Þ

A variant of the Beavers and Joseph condition was proposed by
Jones (1973) who stipulated that the velocity gradient should be
replaced by shear stress. Extending the Jones condition to the case
of a nonplanar interface we obtain

ð _cNÞ � T ¼ affiffiffiffi
j
p vk � vkp

� �
;

where _c is the shear rate tensor and T is the unit vector tangent to
the interface. We find however that to Oðd3Þ the Jones condition
coincides with the Saffman condition given by Eq. (5).

In using Eqs. (1)–(6) to describe the flow, the effect of bottom
permeability is incorporated through the slip condition at the
interface given by Eq. (5), but the flow is decoupled from the filtra-
tion flow in the porous medium. Thiele et al. (2009) took into ac-
count the filtration flow in establishing a Benney-type equation
for the thickness of a fluid layer flowing down an even porous in-
cline. However, they discovered that for small permeability the re-
sults are in good agreement with those from the equation obtained
if the effect of the porous medium is solely included by means of a
slip condition at the fluid–porous medium interface.

We proceed by depth integrating the equations of motion with
the aim of eliminating the cross-flow variation. This course of ac-
tion is justified by the assumed shallowness of the fluid layer
and the expectation of a flow which varies slowly in the longitudi-
nal direction. Depth integrating the continuity Eq. (1) and incorpo-
rating the kinematic condition (4) yields

@h
@t
þ @q
@x
¼ 0; ð7Þ

where the flow rate, q, is given by

q ¼
Z fðxÞþh

fðxÞ
u dz:

The depth integration of the momentum Eq. (2) can be accom-
plished by applying a weighted residual method based on the
expansion of the longitudinal velocity. In exploring flows over
impermeable and even inclines this approach was originally imple-
mented by Ruyer-Quil and Manneville (2000). They considered an
expansion of the longitudinal velocity of the form u ¼

PJ
j¼0ajðx; tÞ

bjðzÞ, where for 0 6 j 6 J, bjðzÞ are polynomial test functions and
ajðx; tÞ are their amplitudes, with b0ðzÞ being taken to be the
semi-parabolic profile of the Nusselt flow. Resulting from the fact
that the test functions are polynomials, it turns out that only three
terms need to be taken in this expansion, and partial differential
equations governing the amplitude functions are obtained using
a weighted residual method.

Ruyer-Quil and Manneville demonstrate that the amplitudes aj

with j P 1 have much shorter relaxation times than that of a0 and
thus argue that the adiabatic elimination of these functions is war-
ranted. Based on this assumption they obtain a simpler set of gov-
erning equations involving q and h which we will refer to as the
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second-order modified IBL equations. In Ruyer-Quil and Manne-
ville (2002) the authors consider several different weighted resid-
ual methods in connection with the adiabatic elimination
approximation whereby the derivatives of aj with j P 1 are as-
sumed to be negligible. They found that for all the methods consid-
ered the equations ultimately converged to the modified IBL
equations as more terms were retained in the series. However,
the Galerkin method is optimal since convergence is reached with
only one term in the expansion. Scheid et al. (2006) used a Padé
approximant to obtain a refined version of the modified IBL equa-
tions which is able to capture the occurrence of a counter flow at
the front of solitary waves on flows along even and impermeable
inclines as predicted by the direct numerical simulations carried
out by Malamataris et al. (2002). This approach is not followed in
the present investigation due to the complications resulting from
the assumed bottom unevenness and permeability.

The important advantage that the modified IBL equations have
over the original IBL equations is that their prediction for the onset
of flow instability is in exact agreement with that from the Orr-Som-
merfeld equations as reported in Benjamin (1957) and Yih (1963),
which has itself been experimentally verified by Liu et al. (1993).
The modified IBL equations also offer an important advantage over
the Benney equation as they are able to capture the nonlinear devel-
opment of supercritical flows as demonstrated by Ruyer-Quil and
Manneville (2002) who compare the results with the experimental
observations reported by Liu et al. (1995) and the direct numerical
simulations carried out by Ramaswamy et al. (1996).

For the present problem of flow over an undulating permeable
substrate the one term velocity expansion to be used in connection
with the Galerkin method is

u ¼ 3q

2 h3 þ 3d1h2
� � b0;

where b0 is given by

b0 ¼ 2ðhþ fðxÞÞz� z2 � fðxÞ2 � 2fðxÞhþ 2d1h:

Following the Galerkin approach and utilizing b0 as the weight
function, we multiply Eq. (2) by b0 and integrate with respect to z
from fðxÞ to hþ fðxÞ to obtain the following dimensionless equa-
tions for the flow variables h and q:

@h
@t
þ @q
@x
¼ 0; ð8Þ
dþ2
dd1

h

� �
@q
@t
� 5

6
h

d3f

dx3þ
5
6

h
@3h
@x3þ

5
2

d1
d3f

dx3þ
5
2

d1
@3h
@x3

 !
Sd3

� �5
q df

dx

� �2

h2Re
þ9

2

@2q
@x2

Re
�5

2
q @h

@x

� �
df
dx

h2Re
�6

q@2h
@x2

hRe

 
�15

4

q d2f

dx2

hRe

þ4
q @h

@x

� �2

h2Re
�9

2

@q
@x

� �
@h
@x

hRe

!
d2� 9

7
q2 @h

@x

h2 �
5
2

hcoth@h
@x

Re
�5

2
hcoth df

dx

Re

 

�17
7

@q
@x

� �
q

h
�17

7
d1

@q
@x

� �
q

h2

!
dþ 15

2
coth df

dx

Re
þ45

16
q2 df

dx

h3 þ
15
2

coth@h
@x

Re

 !
d1d

þ5
2

q

h2Re
�5

2
h

Re
�15

2
d1

Re
¼0:

ð9Þ

In the impermeable bottom case, which is obtained by setting
d1 ¼ 0, these equations reduce to those obtained in D’Alessio
et al. (2009) which in turn coincide with the second-order modified
IBL equations obtained by Ruyer-Quil and Manneville in the even-
bottom case which corresponds to setting fðxÞ � 0.
3. Linear stability analysis

From Eq. (8) we obtain that the steady-state solution for q is a
constant. If we use this constant as the discharge scale Q, then in
dimensionless form we have that q ¼ qs ¼ 1 and h ¼ hsðxÞ where
hsðxÞ satisfies the nonlinear differential equation given by
5
6

d2Sðhs þ 3d1Þh2
s h000s �

2d
Re
½3hsh

00
s � 2ðh0sÞ

2�

� 5 cot h
2Re

h3
s þ

5d
2Re

f0 þ 15d1 cot h
2Re

h2
s �

9
7

� �
h0s

� 15d
4Re

f00hs þ
5

2dRe
� 5 cot h

2Re
f0 þ 5

6
d2Sf000

� �
ðhs þ 3d1Þh2

s

� 45d1

16
f0

hs
¼ 5

2dRe
þ 5d

Re
ðf0Þ2; ð10Þ

with the prime denoting differentiation with respect to x and once
again fðxÞ ¼ ab cosð2pxÞ.

To study how small disturbances will evolve when superim-
posed on the steady equilibrium solution, we linearize the govern-
ing equations by introducing perturbations ĥ; q̂ and set

h ¼ hsðxÞ þ ĥ; q ¼ 1þ q̂:

The linearized perturbation equations can then be written in the
form

@ĥ
@t
þ @q̂
@x
¼ 0; ð11Þ
@q̂
@t
� 9dhs

2Reðhs þ 2d1Þ
@2q̂
@x2 þ f1

@q̂
@x
þ f2q̂þ f3ĥþ f4

@ĥ
@x

þ 6d
Reðhs þ 2d1Þ

@2ĥ
@x2 þ f5

@3ĥ
@x3 ¼ 0; ð12Þ

where

f1ðxÞ ¼
34Rehs þ 63dhsh

0
s þ 34d1Re

14Reðhs þ 2d1Þhs
;

f2ðxÞ ¼
1

56Redðhs þ 2d1Þh2
s

140hs � 224d2hsðh0sÞ
2 þ 336d2h2

s h00s
�

� 144dRehsh
0
s þ 210d2f00h2

s þ 140d2f0hsh
0
s þ 280d2ðf0Þ2hs

þ 315dd1Ref0Þ;

f3ðxÞ ¼
1

336Redðhs þ 2d1Þh3
s

�2016d2 h2
s h00s

�
þ840d cot hf0h4

s

þ 864Redhsh
0
s � 1680hs � 280d3SReh4

s h000s
� 840h4

s � 3360d2ðf0Þ2hs þ 2688d2hsðh0sÞ
2 � 1680d2hsh

0
sf
0

� 2835dd1Ref0 � 280d3SReh4
s f
000 � 1260d2f00h2

s þ 840d cot hh4
s h0s
�
;

f4ðxÞ ¼
�112dh0s � 18Reþ 35df0 þ 35 cot hh3

s þ 105 cot hd1h2
s

14Rehsðhs þ 2d1Þ
;

f5ðxÞ ¼
�5d2Shsðhs þ 3d1Þ

6ðhs þ 2d1Þ
:

ð13Þ

We first entertain the case of an even bottom having fðxÞ � 0. In
this case Eq. (10) admits a constant solution, h0, satisfying the alge-
braic equation

h3
0 þ 3d1h2

0 � 1 ¼ 0:

The exact solution of this equation is obtainable, however here
we present only the asymptotic expansion of the solution for small
d1 up to Oðd3

1Þ:
h0 ¼ 1� d1 þ d2

1 þ O d3
1

� �
:

For the even bottom case the linearized perturbation equations
have constant coefficients and we accordingly introduce normal
modes of the form
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ĥ ¼ ~herteikx and q̂ ¼ ~qerteikx:

The associated dispersion relation is given by

42dh3
0Reþ 84dh2

0Red1

� �
r2 þ 105h0 þ 102 idh2

0kRe
�

þ 102 idh0d1 kReþ 189d2h3
0k2
�
rþ 210 ikþ 105 ikh3

0

þ 35Sk4d3h4
0Reþ 105Sk4d3h3

0Red1 þ 252 id2h2
0k3

� 54dh0k2Reþ 105dh4
0 cot hk2 þ 315dh3

0 cot hd1 k2 ¼ 0:

Analyzing this equation we find that there is a critical Reynolds
number Reeven

crit such that if Re 6 Reeven
crit then the real part of r is non-

positive for perturbations of any wavenumber k, while if
Re > Reeven

crit then there exists a critical wavenumber kmax such that
the real part of r is positive if and only if k < kmax. Consequently,
Reeven

crit is the critical Reynolds number for flow instability, and for
supercritical flows only perturbations that are sufficiently long be-
come unstable.

Exact analytic solutions for Reeven
crit and kmax have been obtained

but the expressions are very long and elaborate and explicitly pre-
senting them here would serve little purpose. We can say that
upon inspecting these expressions it can readily be seen that while
kmax is dependent on all the parameters, Reeven

crit only varies with
cot h and d1, i.e. the critical Reynolds number for the onset of flow
instability is only dependent on the inclination and permeability of
the bottom surface. In Fig. 2 we present the dependence of Reeven

crit

on d1 for several bottom inclinations. The indication is that bottom
permeability acts to destabilize the flow. An explanation of this ef-
fect will be outlined later in this section. In Fig. 3 we use the solu-
tion for kmax to obtain several neutral stability curves in the Re� k
plane. Up to Oðd3

1Þ the solution for Reeven
crit is given by

Reeven
crit ¼

5
6

cot h 1� 29
7

d2
1

� �
þ O d3

1

� �
:

When the difference in scaling is taken into account, this result
is in agreement with that predicted by the Orr-Sommerfeld equa-
tion as obtained by Pascal (1999). Also, with d1 ¼ 0 the expression
for Reeven

crit reduces to 5
6 cot h which is the well-known result for flow

over impermeable surfaces. An alternate stability analysis employ-
ing the first-order Benney equation is presented in Appendix A
which yields a result that comes in close agreement to that above.

For the case of an uneven bottom, the coefficients in Eq. (12) are
periodic functions. We thus apply Floquet–Bloch theory to conduct
the stability analysis. Consequently, we represent the perturba-
tions as Bloch-type functions having the form
ĥ ¼ erteiKx
X1

n¼�1
ĥnei2pnx; q̂ ¼ erteiKx

X1
n¼�1

q̂nei2pnx:

The exponential factor containing the Bloch wavenumber, K,
represents disturbances which interact with the periodic bottom
topography via the equilibrium flow, which is represented by the
Fourier series composed of its harmonics. Introducing the Bloch-
type functions with truncated series into the perturbation equa-
tions yields an algebraic eigenvalue problem. This problem can
be solved numerically for the temporal growth rate given by the
real part of r. In this way we can determine the critical Reynolds
number for the onset of instability, and for supercritical flows we
can compute the wavelength and speed of unstable disturbances.

In Fig. 4 we display the variation of the critical Reynolds num-
ber, Recrit , with the amplitude of the bottom undulations, ab, for
several values of the surface tension parameter, S. An evident con-
sequence of bottom topography is to introduce a dependence of
Recrit on S. In other words, surface tension influences the onset of
instability for flows over uneven surfaces.

In Figs. 5 and 6 we display the variation with S of Reeven
crit � Recrit ,

the difference in the critical Reynolds numbers corresponding to
the cases with and without bottom topography. Negative values
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for this function then indicate that bottom topography acts to stabi-
lize the flow, while positive values indicate that bottom topography
has a destabilizing effect. Values of S where the function is zero cor-
respond to ‘‘transition points” in the sense that as S is increased
through these values the destabilizing role of bottom topography
is reversed. The reversal in the stabilizing effect of bottom topogra-
phy as S is increased was first discovered in D’Alessio et al. (2009) and
subsequently confirmed by Heining and Aksel (2009) who con-
ducted their investigation by considering the inverse problem. In
the present work we now examine a broader range of surface tension
values and find several transition points. In Fig. 5 we fix the bottom
inclination at cot h ¼ 0:5 and include the difference variation for sev-
eral values of d. It can be seen that bottom topography acts to stabi-
lize the flow with the exception of large S values and a compact
interval of S values in the intermediate range. It is also apparent that
as d is decreased the curves become steeper at the second transition
point. Based on our scaling, decreasing d can be associated with
increasing the wavelength of the bottom undulations.

In Fig. 6 we present the curves for the critical Reynolds number
difference corresponding to various inclination values. We can con-
clude from these results that for gentle inclinations bottom
unevenness destabilizes the flow for a wide range of S values with
the stabilizing effect of bottom topography being limited to flows
with weak surface tension. As the bottom inclination is increased,
the stabilizing effect of bottom topography is encountered at an
increasing range of S values, and for sufficiently steep inclination
an undulating bottom only destabilizes the flow when combined
with strong surface tension.

As discussed above, in spite of being restricted to a small range
of values by the assumptions of our model, the parameter d has an
important effect on the results. We have discovered, on the other
hand, that in most cases varying the permeability parameter, d1,
has little impact on Recrit and no qualitative inferences can be made
about its impact with the exception of the anticipated conclusion
that bottom permeability destabilizes the flow. In Fig. 7 we give
the Reeven

crit � Recrit variation with S for different values of d1. It can
be seen that for most S values the introduction of bottom perme-
ability has little effect on Recrit and has no impact on whether bot-
tom topography stabilizes or destabilizes the flow. However, for an
S value in the vicinity of the second zero of the difference function
we expect that there is sufficient variation in Recrit with d1 to have a
notable impact on the stability of the flow. Indeed, the Recrit as a
function of ab curves displayed in Fig. 8 reveal that for sufficiently
large ab bottom permeability effectuates a significant change in the
critical Reynolds number and causes a reversal in the destabilizing
role played by bottom unevenness.
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We have seen that bottom permeability destabilizes the flow for
the even bottom case and Fig. 8 suggests that the same is true for
an uneven bottom. An explanation as to why a porous surface
destabilizes the flow will next be presented. This involves examin-
ing how permeability alters the steady-state solution and the
interaction between bottom topography and permeability. We
start by expanding the steady-state flow variables us;ws; ps in the
following series

usðx; zÞ ¼ u0ðx; zÞ þ du1ðx; zÞ þ d2u2ðx; zÞ þ � � � ;
wsðx; zÞ ¼ w0ðx; zÞ þ dw1ðx; zÞ þ d2w2ðx; zÞ þ � � � ;
psðx; zÞ ¼ p0ðx; zÞ þ dp1ðx; zÞ þ d2p2ðx; zÞ þ � � � :

These expansions are then substituted into the steady-state
two-dimensional Navier-Stokes equations. Equating powers of d
results in a closed system of equations at each order. The same is
done for the corresponding boundary conditions (5) and (6). The
steady-state solution hsðxÞ can also be expanded in a series by
resorting to Eq. (10). It can be easily shown that

hsðxÞ ¼ h0 þ dh1ðxÞ þ Oðd2Þ;

where the constant h0 is identical to that for the even bottom case
and

h1ðxÞ ¼
1

ðh0 þ 2d1Þ
h0ðh0 þ 3d1Þ cot h

3ðh0 þ 2d1Þ
þ 3Red1

8h2
0

 !
f0ðxÞ:

Although this procedure is similar to that used in deriving the Ben-
ney equation discussed in Appendix A, there are some significant
differences. For example, the Benney equation represents an un-
steady evolution equation for h which emanates from the kinematic
condition, whereas in the approach developed here the kinematic
condition is not used. For simplicity, we will consider the case of
negligible surface tension.

The leading order problem is governed by the equations

@p0

@z
¼ �3 cot h

Re
;

@2u0

@z2 ¼ �3;
@w0

@z
¼ � @u0

@x
;

and the following boundary conditions

d1 ¼
@u0

@z
¼ u0;w0 ¼ fu0

p0 ¼
@u0

@z
¼ 0 at z ¼ h0 þ fðxÞ:

The solution to the leading order problem is given by

p0ðx; zÞ ¼
3 cot h

Re
ðh0 þ f� zÞ;

u0ðx; zÞ ¼ �
3
2
ðz� fÞ2 þ 3h0ðz� fÞ þ 3h0d1;

w0ðx; zÞ ¼ �
3
2

f0ðz� fÞ2 þ 3h0f
0ðz� fÞ þ 3h0d1f

0:

We note that although the kinematic condition was not imposed
in arriving at the above solutions, w0ðx; zÞ does, in fact, satisfy the
free-surface condition w0ðx; z ¼ h0 þ fÞ ¼ u0ðx; z ¼ h0 þ fÞf0. Contin-
uing this procedure to second-order we obtained the approximate
steady-state solution for us:

usðx; zÞ � u0ðx; zÞ þ du1ðx; zÞ þ d2u2ðx; zÞ

where
u1ðx;zÞ¼3cothf0
1
2
ðz� fÞ2�h0ðz� fÞ�h0d1

� �
;

u2ðx;zÞ¼3ðf0Þ2ðz� fÞ2þKðz� fÞþ6f00 �1
6
ðz� fÞ3þh0

2
ðz�fÞ2

� �

þ9cothRef00 � 1
360
ðz� fÞ6þ h0

60
ðz� fÞ5� h2

0

24
ðz� fÞ4

 

�h2
0d1

6
ðz�fÞ3�h2

0d
2
1

2
ðz� fÞ2

!
;þd1K�3h0ðf1Þ2 d1þ

h0

2

� �
;

with

KðxÞ¼�6h0ðf0Þ2�3h0f
00 d1þ

3h0

2

� �
þ9cothRef00

h5
0

10
þh4

0d1

2
þh3

0d
2
1

 !
:

Equipped with this approximate solution for usðx; zÞwe can next
determine the steady flow rate, Q s, by evaluating

QsðxÞ ¼
Z h0þf

f
usðx; zÞdz;

and then compute the average value over the bottom topography to
give Qs where

Qs ¼
Z 1

0
QsðxÞdx:

Following this procedure we obtain

Qsðd1Þ � 1� 2p2a2
bh2

0
7h0

2
þ 9d1

� �
d2:

To arrive at this expression we have made use of the profile
fðxÞ ¼ ab cosð2pxÞ for the bottom topography. We point out that
the effect of bottom topography is represented by the second term
in the expression for Qs and it can thus be seen to act in a way so as
to reduce the mean flow rate of the steady flow over both perme-
able and impermeable surfaces. Now, it has been shown experi-
mentally by Wierschem et al. (2005) and theoretically by
D’Alessio et al. (2009) that for negligible surface tension bottom
topography stabilizes the flow; therefore we can associate a reduc-
tion in the mean flow rate with a more stable steady flow. Turning
next to the effect of bottom permeability, we consider the quantity
DQs ¼ Q sðd1Þ � Q sð0Þwhich gives the mean flow rate difference be-
tween steady flows over permeable and impermeable surfaces. We
find that DQs � 3p2a2

bd1d
2 which demonstrates that bottom per-

meability increases the mean flow rate of the steady flow and con-
sequently renders it more unstable.

In the next section we determine if nonlinear effects have any
significant impact on the predictions presented here.

4. Nonlinear stability analysis

A stability analysis that takes into account the nonlinear effects
can be carried out by examining the evolution of the perturbed
equilibrium flow obtained by numerically solving the fully nonlin-
ear governing Eqs. (8) and (9). Such a nonlinear stability analysis of
gravity-driven flows has been implemented by several researchers
including Kranenburg (1992), Brook et al. (1999), Chang et al.
(2000), Zanuttigh and Lamberti (2002), Balmforth and Mandre
(2004), Pascal and D’Alessio (2007), and D’Alessio et al. (2009).

In order to apply our numerical method we must reformulate
Eq. (9) in order to express it in the form

@q
@t
þ @

@x
f ðh; qÞ ¼ Wðh; q; xÞ þ v h; q;

@h
@x
;
@2h
@x2 ;

@3h
@x3 ;

@q
@x
;
@2q
@x2 ; x

 !
;

ð14Þ

where the gradient of the flux function f contains terms expressed
as total derivatives with respect to x. Here, W denotes the terms that
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do not contain the derivatives of h and q, and v denotes the remain-
ing derivative terms. The explicit formulation of f ;W and v are dis-
cussed and given in Appendix B.

Eqs. (8) and (14) can be regarded as a system of nonlinear
hyperbolic conservation laws with source terms. To deal with the
derivative dependent source terms in Eq. (14) we resort to a frac-
tional-step splitting approach. In particular, in advancing the
approximate solution from one time level to the next we first con-
sider the reduced system

@h
@t
þ @q
@x
¼ 0;

@q
@t
þ @

@x
f ðh; qÞ ¼ Wðh; q; xÞ:

This system can be effectively dealt with by the scheme proposed
by Bale et al. (2003). This method is a modification of the high-reso-
lution wave-propagation algorithm first introduced by Leveque
(1997) and involves utilizing an eigenvector decomposition of flux
differences instead of state variable differences. It captures the bal-
ance between the source term and the flux gradient which is appro-
priate for cases when the solution grows slowly in time.

In the second step of the procedure we consolidate the various
derivative dependent source terms into one term denoted by v to
obtain a corrected approximation for q by solving

@q
@t
¼ v h; q;

@h
@x
;
@2h
@x2 ;

@3h
@x3 ;

@q
@x
;
@2q
@x2 ; x

 !
: ð15Þ

We use the solution from the first step to set up h and its deriva-
tives and as an initial distribution for q. Discretizing Eq. (15) by
means of the Crank–Nicolson scheme and imposing periodicity con-
ditions leads to a nonlinear system of algebraic equations which we
solve iteratively using a robust algorithm which takes advantage of
the structure and sparseness of the resulting linearized system.

We can use our numerical method to calculate the temporal
evolution of a certain initial flow over a periodic spatial domain
the length of which is arbitrary but equal to a whole multiple of
the scaled wavelength of the bottom undulations. As an initial flow
for our calculations we use the approximate solution to our steady-
state problem. The error associated with the approximation serves
as a small-amplitude wide-band perturbation, and the evolution of
the perturbed state reveals the instability of the flow under consid-
eration. For a fixed computational domain we can consider various
flow conditions and thus determine the critical values of the flow
parameters for instability. Since the assumed computational do-
main length places an upper bound on the wavelength of the in-
cluded perturbation components, we can conclude that only
components with wavenumber K 6 2p=L, with L being the length
of the computational domain, are unstable under these conditions.
These results can be compared with the predictions from the linear
analysis, and for the cases that were considered good agreement
was found between the two, as illustrated in Fig. 9.

A comparison of our predictions of the critical conditions for
flow instability with experimental data can serve as a check of
the validity of the approximations associated with our depth-inte-
grated model. Such experimental data is not available for flows
over porous substrates, however an experimental verification of
our results is possible for the impermeable bottom case.

Liu et al. (1993) have carried out experiments on the flow along an
even impermeable surface of a glycerine–water film with parame-
ters: h ¼ 5:6�; m ¼ 5:02� 10�6m2=s (kinematic viscosity), q ¼
1:13� 103kg=m3 and T ¼ 6:9� 10�2N=m (surface tension). The fluid
properties correspond to a Kapitza number of Ka ¼ 331:85, with this
nondimensional number being defined as Ka ¼ T=ðqg1=3m4=3Þ and
related to the our parameter S by S ¼ ð3= sin hÞ1=3Ka=Re5=3. For vari-
ous Reynolds numbers Liu et al. report the critical frequency, f, for
perturbations to become unstable. This dimensional frequency is re-
lated to our nondimensional wavenumber, k, through the expression

kd ¼ 3
g sin h

� �2=3 2pm1=3f

cRe1=3 ;

where c ¼ 3 is the dimensionless phase speed and f is in Hz. From
our linear stability analysis we obtain the following relationship
for neutral stability for flow over an even impermeable surface

5
6

cot h
Re
¼ 175þ 5ðkdÞ2 � 33ðkdÞ4

7½5þ 9ðkdÞ2�2
� 5

18
SðkdÞ2: ð16Þ

In Fig. 10 we present this relationship in the Re� kd plane to-
gether with the experimental data. The agreement is quite reason-
able given that the Reynolds numbers under consideration range
approximately from 8.5 to 16 and our model is only of second-or-
der in d if Re ¼ Oð1Þ.

For the case of flow along an impermeable uneven bottom, we can
compare our results for the critical Reynolds number for the onset of
instability with those from the experimental work of Wierschem et al.
(2005). Their setup consisted of a wavy bottom with three equal sinu-
soidal corrugations with a ratio of amplitude to wavelength given by



Table 1
Comparison with experimental results for Recrit for the impermeable case with
ab ¼ 0:5 and d ¼ 0:1.

h (�) Recrit

Experimental Nonlinear simulations Linear stability analysis

15 5:1	 0:4 (5.5,5.6) 5.6
30 2:2	 0:2 (1.8,1.9) 1.7
40.7 1:3	 0:1 (1.1,1.2) 1.1
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Fig. 12. The permanent solution for q as a function of x with cot h ¼ 1; ab ¼ 0:15;
d1 ¼ 0:1; d ¼ 0:1 and S ¼ 10.
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Ab=kb ¼ 0:05. The fluid layer was a silicone oil (B200) with
m¼2:24�10�4 m2=s, q¼9:68�102 kg=m3 and T¼2:07�10�2 N=m.
Table 1 indicates good agreement between the experimental data
and the predictions from our model. Our results were obtained with
ab¼0:5 and d¼0:1, and the experimental data is expressed in terms
of our definition of the Reynolds number.

It should be pointed out that comparisons of our results with
the experimental observations of Vlachogiannis and Bontozoglou
(2002) are not appropriate since the wavy bottom used in that
study consists of a square wave instead of a sinusoidal wave which
we consider here. The square wave can be thought of as a Fourier
series of harmonics of the fundamental wavelength which will
interact and consequently affect the stability characteristics.

We next focus on following the development of the unstable
flow and determining the final wave structure which describes
the secondary flow arising from the instability. We chose to pres-
ent the variation of q with x as opposed to that of h since the latter
more noticeably exhibits the short-scale variations induced by the
bottom undulations, and as a result small amplitude deviations
from the equilibrium solution are less evident. The evolution illus-
trated in Fig. 11 resembles that observed in film flows along even
and impermeable surfaces as noted in Chang (1994). In particular,
q as a function of x, which is initially uniform, becomes sinusoidal
with the amplitude growing in time. The development continues
and culminates in the appearance of the famed teardrop-shaped
solitary waves. Subsequently, the growth of the deflection from
equilibrium saturates and the waveform becomes permanent.

In Fig. 12 we display some permanent solutions for q corre-
sponding to different Re values. It can be seen that with Re ¼ 1
the small amplitude sinusoidal wave pattern that appears in the
early stages of the development of the unstable flow persists and
does not evolve into the solitary waveforms seen for the larger
Re values. We have also found the sinusoidal wave pattern for
Re ¼ 1 to remain permanent on larger computational domains. It
turns out that for the parameter values considered in Fig. 12
Recrit � 0:81 and it is thus apparent that with Re ¼ 1 the instability
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Fig. 11. The evolution of q as a function of x with cot h ¼ 1; ab ¼ 0:15;
d1 ¼ 0:1; d ¼ 0:1; S ¼ 100 and Re ¼ 2.
is not sufficiently strong to generate the growth in wave amplitude
necessary for the formation of solitary waves. In Fig. 13 we present
the free-surface profiles corresponding to the case considered in
Fig. 12. The profile for Re ¼ 3 is not included so as not to clutter
the figure, but it was found to have a larger amplitude than that
for Re ¼ 2, and we thus conclude that the amplitude of interfacial
waves increases as flow conditions become more unstable.
5. Concluding remarks

In this investigation we have developed and implemented a
model for gravity-driven free-surface flow over a permeable incline
with periodic undulations. A linear stability analysis was per-
formed to determine the critical conditions for the instability of
the steady flow. Several nonlinear simulations of the evolution of
perturbed steady flows were conducted which confirmed the onset
of instability as predicted by the linear analysis.

When interpreting the results, particular attention was focused
on whether bottom topography acts to stabilize or destabilize the
flow. The indication is that the destabilizing role of bottom topog-
raphy is strongly dependent on the surface tension of the fluid
layer, the inclination of the bottom surface and the wavelength
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of the undulations that generate the bottom topography. Our
investigation reveals that in spite of being restricted to small val-
ues by the assumptions of our model, in certain cases, bottom per-
meability has an important impact on the instability of the flow.
We found that for particular values of the surface tension parame-
ter and d (the scaled wavenumber of the bottom undulations)
introducing bottom permeability reverses the stabilizing effect of
topography. This investigation found that in general bottom per-
meability destabilizes the flow since it was found to alter the stea-
dy-state flow in such a way so as to render it more unstable.
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Appendix A. The first-order Benney equation

Another technique of determining the instability threshold in-
volves deriving the Benney equation. This equation describes the
evolution of the free surface and for the problem considered in this
investigation we must first expand u;w and p in powers of d as
follows:

u ¼ u0 þ du1 þ � � � ;
w ¼ w0 þ dw1 þ � � � ;
p ¼ p0 þ dp1 þ � � � :

Substituting these into the continuity and momentum equa-
tions, which to first-order become

@u
@x
þ @w
@z
¼ 0; ðA1Þ

dRe
@u
@t
þ u

@u
@x
þw

@u
@z

� �
¼ �dRe

@p
@x
þ 3þ @

2u
@z2 ; ðA2Þ

0 ¼ �Re
@p
@z
� 3 cot hþ d

@2w
@z2 ; ðA3Þ

then leads to a hierarchy of problems. For orders n ¼ 0;1 the quan-
tities un;wn and pn can be found by applying the boundary condi-
tions, which to first-order are

w ¼ f0u; d1
@u
@z
¼ u at z ¼ f;

p ¼ 2d
Re

@w
@z

;
@u
@z
¼ 0 along z ¼ z1:

Evaluating these expressions along the free surface z ¼ z1 and
inserting them into the kinematic condition yields to first-order

@h
@t
þ u0ðz1Þ

@h
@x
þ f0

� �
�w0ðz1Þ þ d u1ðz1Þ

@h
@x
þ f0

� �
�w1ðz1Þ

� 	
¼ 0:

Determining un;wn; pn for n ¼ 0;1 is a straight-forward, albeit
tedious, task. Since little is gained in the details, we omit the alge-
bra and move directly to the final result for the first-order Benney
equation for an uneven bottom

@h
@t
þ @

@x
h3 þ 3d1h2
� �

þ d
@

@x
6Re

5
h6 @h
@x
þ 36d1Re

5
h5 @h
@x

�

þ15d2
1Reh4 @h

@x
� cot hh3 @h

@x
þ f0

� �
� 3d1 cot hh2 @h

@x
þ f0

� �	
¼ 0:

ðA4Þ

We next linearize (A4) using h ¼ h0 þ ĥ with h0 ¼ 1� d1þ
d2

1 þ Oðd3
1Þ and introduce the perturbation ĥ ¼ ~heikxert . For an even

bottom f ¼ 0 and it easily follows that the instability threshold
becomes
Reeven
crit ¼

5
6

cot h 1� 7
2

d2
1

� �
þ O d3

1

� �
: ðA5Þ

Although this result is not in exact agreement with that obtained
from the modified IBL model presented in Section 3, the difference is
of Oðd2

1Þ. Since our modified IBL model was derived based on the
assumption that d1 ¼ OðdÞ, the difference between the two results
is of Oðd2Þ. Thus, the second-order difference between the two re-
sults for Reeven

crit is due to the fact that the Benney equation is only
first-order in d.

Appendix B. Reformulation of the governing equations

In this appendix we discuss the reformulation of Eq. (9) in the form
of Eq. (14). We point out that this formulation is not unique and that it
is not possible to have all first-order derivative terms included in the
gradient of f. For the original IBL equations all the first-order deriva-
tive terms arising from the advective terms of the equations of motion
can be included in the gradient of the flux function, and appear in f as
the term 6

5
q2

h . Julien and Hartley (1986) used this form of the IBL equa-
tions to theoretically calculate the celerity of roll waves and showed
that the results are in good agreement with their experimental obser-
vations. For the modified IBL equations a similar term can be incorpo-
rated into the flux function, however certain quasilinear derivative
terms must be included as a source term. When reformulating Eq.
(9), a consideration worth keeping in mind is to construct it in such
a way so that when d1 ¼ 0 we recover the formulation for the imper-
meable case as proposed by D’Alessio et al. (2009). This is beneficial
since permeability effects are not expected to alter the results in a sig-
nificant way. One such formulation consists of Eq. (14) with

f ¼ 9
7

q2

h
þ 5 cot h

4Re
h2 þ 2d1h
� �

; ðB1Þ

v ¼ F1q
@q
@x
� 18d1

7
q2

hF
@h
@x
þ 5d2SF2h2

6F
@3h
@x3

þ d
ReF

9
2

h2 @
2q
@x2 �

9
2

h
@q
@x

@h
@x
� 6qh

@2h
@x2 þ 4q

@h
@x

� �2

� 5
2

f0q
@h
@x

" #
;

ðB2Þ

W ¼ �45
16

d1f
0

hF
q2 þ 5

2dRe
F2h2 � q

F

 !
� 5 cot h

2Re
F2h2f0

F

þ 5d2SF2h2

6F
f000 þ d

ReF
�15

4
f00qh� 5ðf0Þ2q

� �
;

where

Fðd1; hÞ ¼ h2 þ 2d1h; F1ðd1; hÞ ¼
hþ 19d1

7F
and F2ðd1; hÞ ¼ hþ 3d1:

The first two terms in the expression for v are advective terms
not included in the flux function. Another possibility is to cast the
governing equations in the form of Eq. (14) with

f ¼ 9
7
þ d1

� �
q2

h
þ 5 cot h

4Re
ðh2 þ 2d1hÞ; ðB3Þ

and

v ¼ F1 þ
2d1

h

� �
q
@q
@x
� 1

h2 þ
18

7hF

� �
d1q2 @h

@x
þ 5d2SF2h2

6F
@3h
@x3

þ d
ReF

9
2

h2 @
2q
@x2 �

9
2

h
@q
@x

@h
@x
� 6qh

@2h
@x2 þ 4q

@h
@x

� �2

� 5
2

f0q
@h
@x

" #
;

ðB4Þ

where the advective terms not included in the flux function are the
first two terms in the expression for v.
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Fig. 14. The evolution of q as a function of x for cot h ¼ 1; ab ¼ 0:15;
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The results in Figs. 11–13 were obtained using f and v given by
equations (B1) and (B2). In Fig. 14 we present results for q as a
function of x comparing the results from the two formulations
(B1),(B2) and (B3), (B4). In this example we used an extreme value
of d1 so as to accentuate the difference. It can be seen that the
structure of the solution is the same with only a small difference
in the speed of propagation of the solitary wave. Indeed, we found
the two formulations to give identical predictions for the critical
conditions for instability.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ijmultiphaseflow.2010.03.003.
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